International Journal of Molecular Sciences (Jul 2022)

Proteomic Investigation of the Role of Nucleostemin in Nucleophosmin-Mutated OCI-AML 3 Cell Line

  • Ilaria Cela,
  • Maria Concetta Cufaro,
  • Maurine Fucito,
  • Damiana Pieragostino,
  • Paola Lanuti,
  • Michele Sallese,
  • Piero Del Boccio,
  • Adele Di Matteo,
  • Nerino Allocati,
  • Vincenzo De Laurenzi,
  • Luca Federici

DOI
https://doi.org/10.3390/ijms23147655
Journal volume & issue
Vol. 23, no. 14
p. 7655

Abstract

Read online

Nucleostemin (NS; a product of the GNL3 gene) is a nucleolar–nucleoplasm shuttling GTPase whose levels are high in stem cells and rapidly decrease upon differentiation. NS levels are also high in several solid and hematological neoplasms, including acute myeloid leukaemia (AML). While a role in telomere maintenance, response to stress stimuli and favoring DNA repair has been proposed in solid cancers, little or no information is available as to the role of nucleostemin in AML. Here, we investigate this issue via a proteomics approach. We use as a model system the OCI-AML 3 cell line harboring a heterozygous mutation at the NPM1 gene, which is the most frequent driver mutation in AML (approximately 30% of total AML cases). We show that NS is highly expressed in this cell line, and, contrary to what has previously been shown in other cancers, that its presence is dispensable for cell growth and viability. However, proteomics analysis of the OCI-AML 3 cell line before and after nucleostemin (NS) silencing showed several effects on different biological functions, as highlighted by ingenuity pathway analysis (IPA). In particular, we report an effect of down-regulating DNA repair through homologous recombination, and we confirmed a higher DNA damage rate in OCI-AML 3 cells when NS is depleted, which considerably increases upon stress induced by the topoisomerase II inhibitor etoposide. The data used are available via ProteomeXchange with the identifier PXD034012.

Keywords