Acta Agriculturae Slovenica (Sep 2020)

From plant biomass to biofuels and bio-based chemicals with microbial cell factories

  • Maša VODOVNIK,
  • Matevž ZLATNAR

DOI
https://doi.org/10.14720/aas.2020.116.1.1331
Journal volume & issue
Vol. 116, no. 1

Abstract

Read online

Global energy demands and global warming represent key challenges of the future of human society. Continous renewable energy supply is key for sustainable economy development. Waste plant biomass represent abundant source of renewable energy that can be transformed to biofuels and other value-added products, which is currently limited due to the lack of cost-effective biocatalysts. The bottleneck of this process is the degradation of structural polysaccharides of plant cell walls to soluble compounds that can be fermented to solvents or transformed to biogas via methanogenesis and can be used as biofuels or chemical raw materials. In order to replace traditional physical and chemical methods of lignocellulose pretreatment with more environmentally friendly biological approaches, native microbial enzyme systems are increasingly being explored as potential biocatalysts that could be used in these processes. Microbial enzymes are useful either as catalysts in the enzymatic hydrolysis of lignocelluloses or as components incorporated in engineered microbes for consolidated bioprocessing of lignocelluloses. The unprecedented development of tools for genetic and metabolic engineering for a wide range of microorganisms enabled significant progress in the development of microbial cell factories optimized for the producton of biofuels. One of the most promising strategies aimed towards this goal, i.e. systematic design and heterologous expression of »designer cellulosomes« in industrial solventogenic strains is adressed in detail.

Keywords