Radiation Oncology (Apr 2023)

Evaluation of initial patient setup methods for breast cancer between surface-guided radiation therapy and laser alignment based on skin marking in the Halcyon system

  • Seonghee Kang,
  • Hyeongmin Jin,
  • Ji Hyun Chang,
  • Bum‑Sup Jang,
  • Kyung Hwan Shin,
  • Chang Heon Choi,
  • Jung-in Kim

DOI
https://doi.org/10.1186/s13014-023-02250-3
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background This study was conducted to evaluate the efficiency and accuracy of the daily patient setup for breast cancer patients by applying surface-guided radiation therapy (SGRT) using the Halcyon system instead of conventional laser alignment based on the skin marking method. Methods and materials We retrospectively investigated 228 treatment fractions using two different initial patient setup methods. The accuracy of the residual rotational error of the SGRT system was evaluated by using an in-house breast phantom. The residual translational error was analyzed using the couch position difference in the vertical, longitudinal, and lateral directions between the reference computed tomography and daily kilo-voltage cone beam computed tomography acquired from the record and verification system. The residual rotational error (pitch, yaw, and roll) was also calculated using an auto rigid registration between the two images based on Velocity. The total setup time, which combined the initial setup time and imaging time, was analyzed to evaluate the efficiency of the daily patient setup for SGRT. Results The average residual rotational errors using the in-house fabricated breast phantom for pitch, roll, and yaw were 0.14°, 0.13°, and 0.29°, respectively. The average differences in the couch positions for laser alignment based on the skin marking method were 2.7 ± 1.6 mm, 2.0 ± 1.2 mm, and 2.1 ± 1.0 mm for the vertical, longitudinal, and lateral directions, respectively. For SGRT, the average differences in the couch positions were 1.9 ± 1.2 mm, 2.9 ± 2.1 mm, and 1.9 ± 0.7 mm for the vertical, longitudinal, and lateral directions, respectively. The rotational errors for pitch, yaw, and roll without the surface-guided radiation therapy approach were 0.32 ± 0.30°, 0.51 ± 0.24°, and 0.29 ± 0.22°, respectively. For SGRT, the rotational errors were 0.30 ± 0.22°, 0.51 ± 0.26°, and 0.19 ± 0.13°, respectively. The average total setup times considering both the initial setup time and imaging time were 314 s and 331 s, respectively, with and without SGRT. Conclusion We demonstrated that using SGRT improves the accuracy and efficiency of initial patient setups in breast cancer patients using the Halcyon system, which has limitations in correcting the rotational offset.

Keywords