Nanomaterials (Jun 2024)

Investigating UV-Irradiation Parameters in the Green Synthesis of Silver Nanoparticles from Water Hyacinth Leaf Extract: Optimization for Future Sensor Applications

  • Fueangfakan Chutrakulwong,
  • Kheamrutai Thamaphat,
  • Mana Intarasawang

DOI
https://doi.org/10.3390/nano14121018
Journal volume & issue
Vol. 14, no. 12
p. 1018

Abstract

Read online

Silver nanoparticles (AgNPs) can be produced safely and greenly using water hyacinth, an invasive aquatic plant, as a reducing agent. This study aimed to optimize the UV-irradiation parameters for the synthesis of AgNPs from water hyacinth leaf extract. The study varied the reaction time and pH levels and added a stabilizing agent to the mixture. The synthesized AgNPs were characterized using UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma optical emission spectroscopy (ICP-OES). The findings revealed that the optimal conditions for synthesizing AgNPs were achieved by adjusting the pH level to 8.5, adding starch as a stabilizing agent, and exposing the mixture to UV-A radiation for one hour. These conditions resulted in the smallest size and highest quantity of AgNPs. Furthermore, the synthesized AgNP colloids remained stable for up to six months. This study highlights the potential of utilizing water hyacinth as a sustainable and cost-effective reducing agent for AgNP synthesis, with potential applications in pharmaceuticals, drug development, catalysis, and sensing detection.

Keywords