Applied Rheology (Jun 2015)
Spatial-Temporal Phenomena in the Flows of Multi-Component
Abstract
Measuring the rheological properties of multi-component (and multi-phase) systems meets with many special problems which are absent in flows of homogeneous materials. Such complex fluids have inherent structure and all the peculiarities of their behavior are determined by stress-induced temporal-spatial structure rearrangements. This paper is a review devoted to the physical origin and classification of problems encountered in the flow of multi-component materials. Stress-driven phenomena can be related to phase transformations (the formation of a new phase in polymerization, crystallization, amorphous phase separation), molecular and structure orientation, and various forms of self-organization. Some of these time effects are considered to be thixotropic phenomena. Thixotropy of multi-component matters leads to absence of an upper Newtonian plateau, time (rate)-dependence of yield stress and the layered flow in the range of high shear rates. The flow of such matters can lead to the formation of spatially divided structures with different properties and displacement of structures at the macroscopic level that excludes traditional measures of their rheological properties. In addition, the flow of multi-component systems is accompanied by the appearance of anisotropy of their properties. It is emphasized that the stressdriven evolution of rheological properties are not taken into account in the existing widely used constitutive equations.
Keywords