Applied Sciences (Apr 2024)

Modelling Crystalline <i>α</i>-Mg Phase Growth in an Amorphous Alloy Mg<sub>72</sub>Zn<sub>28</sub>

  • Bartosz Opitek,
  • Paweł L. Żak,
  • Janusz Lelito,
  • Vincent Vignal

DOI
https://doi.org/10.3390/app14073008
Journal volume & issue
Vol. 14, no. 7
p. 3008

Abstract

Read online

A model of α-Mg grain growth in an amorphous Mg72Zn28 alloy matrix was developed together with numerical software. Its application enables tracking the growth process of the α-Mg phase in an amorphous alloy. The model was based on the diffusion-driven growth of α-Mg in an amorphous alloy under appropriate boundary conditions at an isothermal annealing temperature and taking into account the presence of a grain with an initial radius of 1 nm. The numerical model was based on a mathematical model of heat flow, described by the Fourier–Kirchhoff equation, and diffusion, described by Fick’s second law. The initial boundary conditions necessary to simulate grain growth in the amorphous phase were established. The results of the numerical simulation indicate grain growth with increasing isothermal annealing temperature and increasing isothermal annealing time.

Keywords