Exploring the Optoelectronic Properties of D-A and A-D-A 2,2′-bi[3,2-<i>b</i>]thienothiophene Derivatives
Levi Gabrian,
Gavril-Ionel Giurgi,
Ioan Stroia,
Elena Bogdan,
Andreea Petronela Crişan,
Niculina Daniela Hădade,
Ion Grosu,
Anamaria Terec
Affiliations
Levi Gabrian
Department of Chemistry and SOOMCC, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, 11 Arany Janos, 400028 Cluj-Napoca, Romania
Gavril-Ionel Giurgi
Department of Chemistry and SOOMCC, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, 11 Arany Janos, 400028 Cluj-Napoca, Romania
Ioan Stroia
Department of Chemistry and SOOMCC, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, 11 Arany Janos, 400028 Cluj-Napoca, Romania
Elena Bogdan
Department of Chemistry and SOOMCC, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, 11 Arany Janos, 400028 Cluj-Napoca, Romania
Andreea Petronela Crişan
Department of Chemistry and SOOMCC, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, 11 Arany Janos, 400028 Cluj-Napoca, Romania
Niculina Daniela Hădade
Department of Chemistry and SOOMCC, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, 11 Arany Janos, 400028 Cluj-Napoca, Romania
Ion Grosu
Department of Chemistry and SOOMCC, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, 11 Arany Janos, 400028 Cluj-Napoca, Romania
Anamaria Terec
Department of Chemistry and SOOMCC, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, 11 Arany Janos, 400028 Cluj-Napoca, Romania
The synthesis of some novel donor-acceptor and acceptor-donor-acceptor systems containing a 2,2′-bi[3,2-b]thienothiophene donor block and various electron-accepting units is described alongside their photophysical properties studied using electrochemistry, optical spectroscopy and theoretical calculations. The obtained results show that the energy levels can be modulated by changing the strength of the acceptor unit. Among the three investigated end-groups, 1,1-dicyanomethylene-3-indanone exhibited the largest bathochromic shift and the lowest band gap suggesting the strongest electron-withdrawing character. Moreover, the emissive properties of the investigated systems vary greatly with the nature of the terminal group and are generally lower compared to their precursor aldehyde derivatives.