Agriculture (Mar 2020)

Genetic Diversity Patterns and Discrimination of 172 Korean Soybean (<i>Glycine max</i> (L.) Merrill) Varieties Based on SSR Analysis

  • Tae-Young Hwang,
  • Byeong Sam Gwak,
  • Jwakyung Sung,
  • Hong-Sig Kim

DOI
https://doi.org/10.3390/agriculture10030077
Journal volume & issue
Vol. 10, no. 3
p. 77

Abstract

Read online

The soybean development goal in Korea has changed over time, but the pattern of genetic diversity in modern varieties has not yet been well characterized. In this study, 20 simple sequence repeat (SSR) markers are shown to generate a total of 344 alleles, where the number of alleles ranges from 7 to 29, with an average of 17.2 per locus, and the polymorphism informative content (PIC) values range from 0.6799 to 0.9318, with an average of 0.8675. Five different clusters are classified using the unweighted pair group mean arithmetic (UPGMA) method. The genetic distance between clusters I and V (0.3382) is the farthest, and that between clusters III and IV (0.0819) is the closest. The genetic distance between all pairings of groups, according to the time period of their release, is lowest (0.1909) between varieties developed in the 1990s and those from 2000 onward, and highest (0.5731) between varieties developed in the 1980s and those from 2000 onward. Model-based structure analysis revealed the presence of three sub-populations and 17 admixtures in the Korean soybean varieties. All 172 Korean soybean varieties were tested for discrimination using six SSR markers. The numbers of varieties that were clustered in each step are as follows: 7 (4.1%) in step 1 (Sat_076), 73 (42.4%) in step 2 (Sat_417), 69 (40.1%) in step 3 (Sat_043), 13 (7.6%) in step 4 (Satt197), 8 (4.6%) in step 5 (Satt434), and 2 (1.2%) in step 6 (Satt179). These results, based on the analysis of genetic resources, can contribute to the creation of a core collection for soybean conservation and breeding, as well as to the development of future varieties with useful traits.

Keywords