Science and Engineering of Composite Materials (Jul 2016)

A low-cost fiberglass polymer resin dielectric material-based microstrip patch antenna for multiband applications

  • Ullah M. Habib,
  • Islam M. Tariqul,
  • Ahsan M. Rezwanul,
  • Liza Mahadi Wan Nor,
  • Latef Tarik Abdul,
  • Uddin M. Jasim

DOI
https://doi.org/10.1515/secm-2014-0333
Journal volume & issue
Vol. 23, no. 4
pp. 447 – 452

Abstract

Read online

The design analysis and prototype of a compact 8×10-mm2 planar microstrip line-fed patch antenna on a readily available, low-cost, reinforced-fiberglass polymer resin composite material substrate is presented in this article. The proposed compact-size antenna has been configured and numerically analyzed using the finite element method-based three-dimensional full-wave electromagnetic field simulator. The optimized design of the antenna has been fabricated on a printed circuit board (PCB), and experimental results have been collected for further analysis. The measurement results affirm the fractional impedance bandwidths of (return loss of less than -10 dB) of 38.78% (2.03–2.98 GHZ) and 16.3% (5.38–6.35 GHz), with average gains of 2.52 and 3.94 dBi at both lower and upper bands, respectively. The proposed dual resonant antenna shows the radiation efficiencies of 91.3% at 2.45 GHz and 87.7% at 5.95 GHz. The stable and almost symmetric radiation patterns and performance criteria of the antenna can successfully cover IEEE 802.11b/g/n, Bluetooth, WLAN, and C-band telecommunication satellite uplinks.

Keywords