PeerJ (Jul 2020)
Habitat preferences rather than morphological traits affect the recovery process of Collembola (Arthropoda, Hexapoda) on a bare saline–alkaline land
Abstract
The Songnen Plain of China was once an important grassland used for sheep grazing, but it has largely been degraded to bare saline-alkaline land (BSAL). BSAL consists of plant-free areas characterized by high soil pH values (up to 10) and salt and alkali (e.g., Na+ and Ca2+) contents, as well as low soil organic matter and water contents; thus, very few soil faunal species can survive on BSAL. The recovery of degraded ecosystems provides a great opportunity to investigate the reconstruction of belowground soil faunal communities. Collembola are a class of widespread and abundant soil fauna that can colonize this harsh environment. Habitat changes on BSAL promote aboveground revegetation, which greatly facilitates the recovery of Collembola. A soil transfer experiment on the BSAL of the Songnen Plain was conducted to study the effects of habitat and Collembola morphological traits on the recovery process of Collembola. Defaunated and with-fauna soil blocks were transferred among three habitats: BSAL, reclaimed arable land, and naturally revegetated grassland. The recovered Collembola in the transferred soil blocks were compared two, seven, and 12 weeks after the start of the experiment. The results showed that (1) the majority of the Collembola, regardless of their morphological traits, recovered in the defaunated soil blocks within 2 weeks; (2) generalists and habitat-preferring species recovered faster than specialists; (3) the average total abundance, species richness, and community composition of Collembola recovered to the natural levels in 2 weeks; and (4) 12 weeks after replacement, the highest average total abundance and species richness of Collembola were found in the arable land. Our results indicate that the majority of Collembola in this study, regardless of their dispersal type, which is related to their morphological traits, are fast dispersers, and their recovery speeds are mainly affected by habitat preferences. We suggest that the reclamation of BSAL to arable land rather than its natural recovery to grassland aids in the recovery of Collembola in degraded grassland systems.
Keywords