PLoS ONE (Jan 2018)
Screen for modulators of atonal homolog 1 gene expression using notch pathway-relevant gene transcription based cellular assays.
Abstract
Atonal homolog 1 (Atoh1) is a basic helix-loop-helix 9 (bHLH) transcription factor acting downstream of Notch and is required for the differentiation of sensory hair cells in the inner ear and the specification of secretory cells during the intestinal crypt cell regeneration. Motivated by the observations that the upregulation of Atoh1 gene expression, through genetic manipulation or pharmacological inhibition of Notch signaling (e.g. γ-secretase inhibitors, GSIs), induces ectopic hair cell growth in the cochlea of the inner ear and partially restores hearing after injuries in experimental models, we decided to identify small molecule modulators of the Notch-Atoh1 pathway, which could potentially regenerate hair cells. However, the lack of cellular models of the inner ear has precluded the screening and characterization of such modulators. Here we report using a colon cancer cell line LS-174T, which displays Notch inhibition-dependent Atoh1 expression as a surrogate cellular model to screen for inducers of Atoh1 expression. We designed an Atoh1 promoter-driven luciferase assay to screen a target-annotated library of ~6000 compounds. We further developed a medium throughput, real-time quantitative RT-PCR assay measuring the endogenous Atoh1 gene expression to confirm the hits and eliminate false positives from the reporter-based screen. This strategy allowed us to successfully recover GSIs of known chemotypes. This LS-174T cell-based assay directly measures Atoh1 gene expression induced through Notch-Hes1 inhibition, and therefore offers an opportunity to identify novel cellular modulators along the Notch-Atoh1 pathway.