In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

Computational study of NMDA conductance and cortical oscillations in schizophrenia

Frontiers in Computational Neuroscience. 2014;8 DOI 10.3389/fncom.2014.00133


Journal Homepage

Journal Title: Frontiers in Computational Neuroscience

ISSN: 1662-5188 (Online)

Publisher: Frontiers Media S.A.

LCC Subject Category: Medicine: Internal medicine: Neurosciences. Biological psychiatry. Neuropsychiatry

Country of publisher: Switzerland

Language of fulltext: English

Full-text formats available: PDF, HTML, ePUB, XML



Kubra eKomek Kirli (Carnegi Mellon University)

Raymond Young-Jin Cho (University of Pittsburgh)

Raymond Young-Jin Cho (UT Health Science Center at Houston)

G B Ermentrout (University of Pittsburgh)


Blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 14 weeks


Abstract | Full Text

N-methyl-D-aspartate (NMDA) receptor hypofunction has been implicated in the pathophysiology of schizophrenia. The illness is also characterized by gamma oscillatory disturbances, which can be evaluated with precise frequency specificity employing auditory cortical entrainment paradigms. This computational study investigates how synaptic NMDA hypofunction may give rise to network level oscillatory deficits as indexed by entrainment paradigms. We developed a computational model of a local cortical circuit with pyramidal cells and fast-spiking interneurons (FSI), incorporating NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA), and γ-aminobutyric acid (GABA) synaptic kinetics. We evaluated the effects of varying NMDA conductance on FSIs and pyramidal cells, as well as AMPA to NMDA ratio. We also examined the differential effects across a broad range of entrainment frequencies as a function of NMDA conductance. Varying NMDA conductance onto FSIs revealed an inverted-U relation with network gamma whereas NMDA conductance onto the pyramidal cells had a more monotonic relationship. Varying NMDA vs. AMPA conductance onto FSIs demonstrated the necessity of AMPA in the generation of gamma while NMDA receptors had a modulatory role. Finally, reducing NMDA conductance onto FSI and varying the stimulus input frequency reproduced the specific reductions in gamma range (~40 Hz) as observed in schizophrenia studies. Our computational study showed that reductions in NMDA conductance onto FSIs can reproduce similar disturbances in entrainment to periodic stimuli within the gamma range as reported in schizophrenia studies. These findings provide a mechanistic account of how specific cellular level disturbances can give rise to circuitry level pathophysiologic disturbance in schizophrenia.