PeerJ Computer Science (Jul 2024)

A knowledge graph algorithm enabled deep recommendation system

  • Yan Wang,
  • Xiao Feng Ma,
  • Miao Zhu

DOI
https://doi.org/10.7717/peerj-cs.2010
Journal volume & issue
Vol. 10
p. e2010

Abstract

Read online Read online

Personalized learning resource recommendations may help resolve the difficulties of online education that include learning mazes and information overload. However, existing personalized learning resource recommendation algorithms have shortcomings such as low accuracy and low efficiency. This study proposes a deep recommendation system algorithm based on a knowledge graph (D-KGR) that includes four data processing units. These units are the recommendation unit (RS unit), the knowledge graph feature representation unit (KGE unit), the cross compression unit (CC unit), and the feature extraction unit (FE unit). This model integrates technologies including the knowledge graph, deep learning, neural network, and data mining. It introduces cross compression in the feature learning process of the knowledge graph and predicts user attributes. Multimodal technology is used to optimize the process of project attribute processing; text type attributes, multivalued type attributes, and other type attributes are processed separately to reconstruct the knowledge graph. A convolutional neural network algorithm is introduced in the reconstruction process to optimize the data feature qualities. Experimental analysis was conducted from two aspects of algorithm efficiency and accuracy, and the particle swarm optimization, neural network, and knowledge graph algorithms were compared. Several tests showed that the deep recommendation system algorithm had obvious advantages when the number of learning resources and users exceeded 1,000. It has the ability to integrate systems such as the particle swarm optimization iterative classification, neural network intelligent simulation, and low resource consumption. It can quickly process massive amounts of information data, reduce algorithm complexity and requires less time and had lower costs. Our algorithm also has better efficiency and accuracy.

Keywords