Fluids (Oct 2021)

Aerodynamic Shape Optimization Method of Non-Smooth Surfaces for Aerodynamic Drag Reduction on A Minivan

  • Zhendong Yang,
  • Yifeng Jin,
  • Zhengqi Gu

DOI
https://doi.org/10.3390/fluids6100365
Journal volume & issue
Vol. 6, no. 10
p. 365

Abstract

Read online

To reduce aerodynamic drag of a minivan, non-smooth surfaces are applied to the minivan’s roof panel design. A steady computational fluid dynamics (CFD) method is used to investigate the aerodynamic drag characteristics. The accuracy of the numerical method is validated by wind tunnel test. The drag reduction effects of rectangle, rhombus and arithmetic progression arrangement for circular concaves are investigated numerically, and then the aerodynamic drag coefficient of the rectangle arrangement with a better drag reduction effect is chosen as the optimization objective. Three parameters, that is, the diameter D of the circular concave, the width W and the longitudinal distance L among the circular concaves, are selected as design variables. A 20-level design of an experimental study using a Latin Hypercube scheme is conducted. The responses of 20 groups of sample points are obtained by CFD simulation, based on which a Kriging model is chosen to create the surrogate-model. The multi-island genetic algorithm is employed to find the optimum solution. The result shows that maximum drag reduction effects up to 7.71% can be achieved with a rectangle circular concaves arrangement. The reduction mechanism of the roof with the circular concaves was discussed. The circular concaves decrease friction resistance of the roof and change the flow characteristics of the recirculation area in the wake of the minivan. The roof with the circular concaves reduces the differential pressure drag of the front and rear of the minivan.

Keywords