Water (Feb 2022)

Using the WWF Water Risk Filter to Screen Existing and Projected Hydropower Projects for Climate and Biodiversity Risks

  • Jeffrey J. Opperman,
  • Rafael R. Camargo,
  • Ariane Laporte-Bisquit,
  • Christiane Zarfl,
  • Alexis J. Morgan

DOI
https://doi.org/10.3390/w14050721
Journal volume & issue
Vol. 14, no. 5
p. 721

Abstract

Read online

Climate change is predicted to drive various changes in hydrology that can translate into risks for river ecosystems and for those who manage rivers, such as for hydropower. Here we use the WWF Water Risk Filter (WRF) and geospatial analysis to screen hydropower projects, both existing (2488 dams) and projected (3700 dams), for a variety of risks at a global scale, focusing on biodiversity risks, hydrological risks (water scarcity and flooding), and how those hydrological risks may shift with climate change, based on three scenarios. Approximately 26% of existing hydropower dams and 23% of projected dams are within river basins that currently have medium to very high risk of water scarcity; 32% and 20% of the existing and projected dams, respectively, are projected to have increased risk by 2050 due to climate change. For flood risk, 75% of existing dams and 83% of projected dams are within river basins with medium to very high risk, and the proportion of hydropower dams in basins with the highest levels of flood risk is projected to increase by nearly twenty times (e.g., from 2% to 36% of dams). In addition, a large proportion of existing (76%) and projected hydropower dams (93%) are located in river basins with high or very high freshwater biodiversity importance. This is a high-level screening, intended to elucidate broad patterns of risk to increase awareness, highlight trends, and guide more detailed studies.

Keywords