International Journal of Nanomedicine (Apr 2018)

Nano-selenium and its nanomedicine applications: a critical review

  • Hosnedlova B,
  • Kepinska M,
  • Skalickova S,
  • Fernandez C,
  • Ruttkay-Nedecky B,
  • Peng Q,
  • Baron M,
  • Melcova M,
  • Opatrilova R,
  • Zidkova J,
  • Bjørklund G,
  • Sochor J,
  • Kizek R

Journal volume & issue
Vol. Volume 13
pp. 2107 – 2128


Read online

Bozena Hosnedlova,1 Marta Kepinska,2 Sylvie Skalickova,3 Carlos Fernandez,4 Branislav Ruttkay-Nedecky,3 Qiuming Peng,5 Mojmir Baron,1 Magdalena Melcova,6 Radka Opatrilova,3 Jarmila Zidkova,6 Geir Bjørklund,7 Jiri Sochor,1 Rene Kizek2,3 1Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic; 2Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; 3Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; 4School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK; 5State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, People’s Republic of China; 6Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic; 7Council for Nutritional and Environmental Medicine, Rana, Norway Abstract: Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration. Keywords: nanoparticles, biomedicine, drug delivery, oxidative stress, anticancer effect, antimicrobial activity, protective effect