Metals (Jul 2021)

Effect of Calcium Treatment on Inclusions in H08A Welding Rod Steel

  • Fangjie Lan,
  • Changling Zhuang,
  • Changrong Li,
  • Guangkai Yang,
  • Hanjie Yao

DOI
https://doi.org/10.3390/met11081227
Journal volume & issue
Vol. 11, no. 8
p. 1227

Abstract

Read online

The effect of calcium treatment on inclusions in H08A welding rod steel was studied by industrial experiment and using thermodynamics theory. The effects of inclusion composition, morphology, quantity, and size in H08A welding rod steel before and after calcium treatment were studied by metallographic microscope, scanning electron microscope (SEM), and energy dispersive spectrometer (EDS). Thermodynamic studies show that the addition of calcium can form various forms of xCaO·yAl2O3, under the condition that the composition of molten steel remains unchanged, the control of calcium content is the key to generate low melting point calcium-aluminate complex non-metallic inclusions and improve the quality of molten steel. The production practice in steel plant shows that for welding rod steels, the calcium content in a suitable range can meet the requirements of calcium treatment. Effective calcium treatment can not only transform the high melting point Al2O3 inclusions into the low melting point complex non-metallic inclusions between 3CaO·Al2O3 and 12CaO·7Al2O3, but also make the original shape-diversified inclusions into the spherical calcium-aluminate complex non-metallic inclusions. Meanwhile, the total number of inclusions and large-scale inclusions in welding rod steel are reduced, and the inclusions tend to disperse in the steel, which is very conducive to the improvement of steel quality. The results show that the modification path of magnesium aluminate spinel in steel is as follows: Al2O3 → MgO-Al2O3 → MgO-CaO-Al2O3. In addition, calcium treatment can modify MgO-Al2O3 spinel in steel into liquid MgO-CaO-Al2O3 complex non-metallic inclusions with low melting point.

Keywords