Materials (Apr 2024)
Finite-Element Modeling of the Temperature Effect on Extended Avalanche Damage of Gas Main Pipelines
Abstract
The dynamic stress–strain state and fracture of a steel main gas pipe section between supports with a straight-through crack was analyzed with consideration of the temperature effect on changes in the mechanical properties of the pipe material. The numerical solution of the problem was implemented in the ANSYS-19.2/Explicit Dynamics software package. The process of fracture in a section of the gas pipeline “Beineu–Bozoy–Shymkent” with a linear crack in the temperature range of −40 °C to +50 °C at the operating pressure of 7.5 MPa and critical pressure equal to 9.8 MPa was considered. As a result, it was found that at the initial growth of the internal pressure from working pressure to critical pressure, the length of the crack doubled. At the same time, the process had a local characteristic. Further development of the crack had the nature of avalanche fracture and depended on the temperature of the steel pipeline. With increasing temperature, there was also an increase in the length of the crack at the avalanche fracture. Thus, at a temperature of 40 °C, the crack lengthened 67.75-fold; at a temperature of −10 °C, the crack lengthened 68-fold; at a temperature of +20 °C, the crack lengthened 68.25-fold; and at a temperature of +50 °C, the crack lengthened 68.5-fold. In this work, this difference was 75% of the initial crack length. This fact will be used for further development of the technique of strengthening damaged pipe sections using bandages.
Keywords