Molecules (Mar 2024)

Neurotensin (8-13) and Neuromedin N Neuropeptides Radiolabelling with Copper-64 Produced on Solid or Liquid Targets

  • Diana Cocioabă,
  • Alexandra I. Fonseca,
  • Radu Leonte,
  • Ivanna Hrynchak,
  • Roxana Tudoroiu-Cornoiu,
  • Sergio J. C. do Carmo,
  • Bogdan Burghelea,
  • Simona Băruță,
  • Ana Rita Almeida,
  • Radu Șerban,
  • Anca Dinischiotu,
  • Antero J. Abrunhosa,
  • Dana Niculae

DOI
https://doi.org/10.3390/molecules29061390
Journal volume & issue
Vol. 29, no. 6
p. 1390

Abstract

Read online

On the verge of a theranostic approach to personalised medicine, copper-64 is one of the emerging radioisotopes in nuclear medicine due to its exploitable nuclear and biochemical characteristics. The increased demand for copper-64 for preclinical and clinical studies has prompted the development of production routes. This research aims to compare the (p,n) reaction on nickel-64 solid versus liquid targets and evaluate the effectiveness of [64Cu]CuCl2 solutions prepared by the two routes. As new treatments for neurotensin receptor-overexpressing tumours have developed, copper-64 was used to radiolabel Neurotensin (8-13) and Neuromedin N. High-quality [64Cu]CuCl2 solutions were prepared using ACSI TR-19 and IBA Cyclone Kiube cyclotrons. The radiochemical purity after post-irradiation processing reached 99% (LT) and 99.99% (ST), respectively. The irradiation of a solid target with 11.8 MeV protons and 150 μAh led to 704 ± 84 MBq/μA (17.6 ± 2.1 GBq/batch at EOB). At the end of the purification process (1 h, 90.90% activity yield), the solution for peptide radiolabelling had a radioactive concentration of 1340.4 ± 70.1 MBq/mL (n.d.c.). The irradiation of a liquid target with 16.9 MeV protons and 230 μAh resulted in 3.7 ± 0.2 GBq/batch at EOB, which corresponds to an experimental production yield of 6.89 GBq.cm3/(g.µA)sat. Benefiting from a shorter purification process (40 min), the activity yielded 90.87%, while the radioactive concentration of the radiolabelling solution was lower (492 MBq/mL, n.d.c.). The [64Cu]CuCl2 solutions were successfully used for the radiolabelling of DOTA-NT(8-13) and DOTA-NN neuropeptides, resulting in a high RCP (>99%) and high molar activity (27.2 and 26.4 GBq/μmol for LT route compared to 45 and 52 GBq/μmol for ST route, respectively). The strong interaction between the [64Cu]Cu-DOTA-NT(8-13) and the colon cancerous cell lines HT29 and HCT116 proved that the specificity for NTR had not been altered, as shown by the uptake and retention data.

Keywords