Ural Mathematical Journal (Dec 2022)
BESSEL POLYNOMIALS AND SOME CONNECTION FORMULAS IN TERMS OF THE ACTION OF LINEAR DIFFERENTIAL OPERATORS
Abstract
In this paper, we introduce the concept of the \(\mathbb{B}_{\alpha}\)-classical orthogonal polynomials, where \(\mathbb{B}_{\alpha}\) is the raising operator \(\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}\), with nonzero complex number \(\alpha\) and \(\mathbb{I}\) representing the identity operator. We show that the Bessel polynomials \(B^{(\alpha)}_n(x),\ n\geq0\), where \(\alpha\neq-{m}/{2}, \ m\geq -2, \ m\in \mathbb{Z}\), are the only \(\mathbb{B}_{\alpha}\)-classical orthogonal polynomials. As an application, we present some new formulas for polynomial solution.
Keywords