iScience (Jun 2022)

Small-molecule fulvic acid with strong hydration ability for non-vitreous cellular cryopreservation

  • Guoying Bai,
  • Jinhao Hu,
  • Sijia Qin,
  • Zipeng Qi,
  • Hening Zhuang,
  • Fude Sun,
  • Youhua Lu,
  • Shenglin Jin,
  • Dong Gao,
  • Jianjun Wang

Journal volume & issue
Vol. 25, no. 6
p. 104423

Abstract

Read online

Summary: The exploitation of biocompatible ice-control materials especially the small molecules for non-vitreous cryopreservation remains challenging. Here, we report a small molecule of fulvic acid (FA) with strong hydration ability, which enables non-vitreous cellular cryopreservation by reducing ice growth during freezing and reducing ice recrystallization/promoting ice melting during thawing. Without adding any other cryoprotectants, FA can enhance the recovery of sheep red blood cells (RBCs) by three times as compared with a commercial cryoprotectant (hydroxyethyl starch) under a stringent test condition. Investigation of water mobility reveals that the ice-control properties of FA can be ascribed to its strong bondage to water molecules. Furthermore, we found that FA can be absorbed by RBCs and mainly locates on membranes, suggesting the possible contribution of FA to cell protection through stabilizing membranes. This work bespeaks a bright future for small-molecule cryoprotectants in non-vitreous cryopreservation application.

Keywords