AIMS Mathematics (Jan 2022)
Positive solutions of infinite coupled system of fractional differential equations in the sequence space of weighted means
Abstract
We first discuss the existence of solutions of the infinite system of $ (n-1, n) $-type semipositone boundary value problems (BVPs) of nonlinear fractional differential equations $ \begin{equation*} \begin{cases} D^{\alpha}_{0_+}u_i(\rho)+\eta f_i(\rho,v(\rho)) = 0,& \rho\in(0,1), \\ D^{\alpha}_{0_+}v_i(\rho)+\eta g_i(\rho,u(\rho)) = 0,& \rho\in(0,1), \\u_i^{(j)}(0) = v_{i}^{(j)}(0) = 0,& 0\leq j\leq n-2, \\ u_{i}(1) = \zeta\int_0^1 u_i(\vartheta)d\vartheta, \ v_{i}(1) = \zeta\int_0^1 v_i(\vartheta)d\vartheta,& i\in\mathbb{N},\\ \end{cases} \end{equation*} $ in the sequence space of weighted means $ c_0(W_1, W_2, \Delta) $, where $ n\geq3 $, $ \alpha\in(n-1, n] $, $ \eta, \zeta $ are real numbers, $ 0 < \eta < \alpha, $ $ D^{\alpha}_{0_+} $ is the Riemann-Liouville's fractional derivative, and $ f_i, g_i, $ $ i = 1, 2, \ldots $, are semipositone and continuous. Our approach to the study of solvability is to use the technique of measure of noncompactness. Then, we find an interval of $ \eta $ such that for each $ \eta $ lying in this interval, the system of $ (n-1, n) $-type semipositone BVPs has a positive solution. Eventually, we demonstrate an example to show the effectiveness and usefulness of the obtained result.
Keywords