Copper oxide nanoflowers/poly-l-glutamic acid modified advanced electrochemical sensor for selective detection of l-tryptophan in real samples
M.A. Khaleque,
M.S. Bacchu,
M.R. Ali,
M.S. Hossain,
M.R.A. Mamun,
M.I. Hossain,
M.Z.H. Khan
Affiliations
M.A. Khaleque
Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
M.S. Bacchu
Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
M.R. Ali
Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
M.S. Hossain
Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
M.R.A. Mamun
Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
M.I. Hossain
Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
M.Z.H. Khan
Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Corresponding author. Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
The main objective of this research work is to develop a low-cost sensor to detect l-tryptophan (L-tryp) in real sample medium based on a modified glassy carbon electrode. For this, copper oxide nanoflowers (CuONFs) and poly-l-glutamic acid (PGA) were used to modify GCE. The prepared NFs and PGA coated electrode was characterized using field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray (EDX) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Furthermore, the electrochemical activity was performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The modified electrode showed excellent electro-catalytic activity towards L-tryp detection in PBS solution at neutral pH 7.0. Based on the physiological pH condition, the proposed electrochemical sensor can detect L-tryp concentration with a linear range of 1.0 × 10−4-8.0 × 10−8 molL−1 with having a detection limit of 5.0 × 10−8 molL−1 and sensitivity of 0.6μA/μMcm2. The selectivity of L-tryp was tested with a mixture of salt and uric acid solution at the above conditions. Finally, this strategy demonstrated excellent recovery value in real sample analysis like milk and urine.