Journal of Nematology (Apr 2022)

Soybean Cyst Nematode Population Development and Its Effect on Pennycress in a Greenhouse Study

  • Hoerning Cody,
  • Chen Senyu,
  • Frels Katherine,
  • Wyse Donald,
  • Wells Samantha,
  • Anderson James

DOI
https://doi.org/10.2478/jofnem-2022-0006
Journal volume & issue
Vol. 54, no. 1
pp. 366 – 372

Abstract

Read online

Midwest crop production is dominated by two summer annual crops grown in rotation, viz., corn (Zea mays L.) and soybean (Glycine max L.). Winter oilseed crops, such as pennycress (Thlaspi arvense L.), can provide ecosystem and economic benefits when added to the corn–soybean rotation. However, adding a new crop adds risks, such as increased pest pressure. The objectives of this study were to (i) evaluate population development of three soybean cyst nematode (SCN; Heterodera glycines) biotypes on three pennycress genotypes and susceptible soybean and (ii) determine whether SCN inoculation level influenced plant biomass. SCN population density and biomass were determined after 60 d in the greenhouse. At the inoculation level of 2,000 eggs/100 cm3 soil, the average egg density for the three pennycress genotypes was 1,959 eggs/100 cm3 soil, lower than that for the susceptible soybean ‘Sturdy’ (9,601 eggs/100 cm3 soil). At the inoculation level of 20,000 eggs/100 cm3 soil, the average egg density for the three pennycress genotypes was 6,668 eggs/100 cm3 soil, lower than that for ‘Sturdy’ (40,740 eggs/100 cm3 soil). The inoculation level did not affect plant biomass. Pennycress is an alternative host to SCN under greenhouse conditions but is a less suitable host than soybean.

Keywords