Electrical, Control and Communication Engineering (May 2014)

Design of AC-DC Grid Connected Converter using Multi-Objective Optimization

  • Piasecki Szymon,
  • Szmurlo Robert,
  • Jasinski Marek

DOI
https://doi.org/10.2478/ecce-2014-0002
Journal volume & issue
Vol. 5, no. 1
pp. 11 – 19

Abstract

Read online

Power electronic circuits, in particular AC-DC converters are complex systems, many different parameters and objectives have to be taken into account during the design process. Implementation of Multi-Objective Optimization (MOO) seems to be attractive idea, which used as designer supporting tool gives possibility for better analysis of the designed system. This paper presents a short introduction to the MOO applied in the field of power electronics. Short introduction to the subject is given in section I. Then, optimization process and its elements are briefly described in section II. Design procedure with proposed optimization parameters and performance indices for AC-DC Grid Connected Converter (GCC) interfacing distributed systems is introduced in section III. Some preliminary optimization results, achieved on the basis of analytical and simulation study, are shown at each stage of designing process. Described optimization parameters and performance indices are part of developed global optimization method dedicated for ACDC GCC introduced in section IV. Described optimization method is under development and only short introduction and basic assumptions are presented. In section V laboratory prototype of high efficient and compact 14 kVA AC-DC converter is introduced. The converter is elaborated based on performed designing and optimization procedure with the use of silicon carbide (SiC) power semiconductors. Finally, the paper is summarized and concluded in section VI. In presented work theoretical research are conducted in parallel with laboratory prototyping e.g. all theoretical ideas are verified in laboratory using modern DSP microcontrollers and prototypes of the ACDC GCC.

Keywords