Nanotechnology and Precision Engineering (Mar 2024)

Investigation on photonic crystal nanobeam cavity based on mixed diamond–circular holes

  • Jingtong Bin,
  • Kerui Feng,
  • Shang Ma,
  • Ke Liu,
  • Yong Cheng,
  • Jing Chen,
  • Qifa Liu

DOI
https://doi.org/10.1063/10.0023847
Journal volume & issue
Vol. 7, no. 1
pp. 013007 – 013007-8

Abstract

Read online

A photonic crystal nanobeam cavity (M-PCNC) with a structure incorporating a mixture of diamond-shaped and circular air holes is proposed. The performance of the cavity is simulated and studied theoretically. Using the finite-difference time-domain method, the parameters of the M-PCNC, including cavity thickness and width, lattice constant, and radii and numbers of holes, are optimized, with the quality factor Q and mode volume Vm as performance indicators. Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance. The optimized cavity possesses a high quality factor Q = 1.45 × 105 and an ultra-small mode volume Vm = 0.01(λ/n) [Zeng et al., Opt Lett 2023:48;3981–3984] in the telecommunications wavelength range. Light can be progressively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure. Thereby, the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio.