Plants (Dec 2024)

Exploring Imaging Techniques for Detecting Tomato Spotted Wilt Virus (TSWV) Infection in Pepper (<i>Capsicum</i> spp.) Germplasms

  • Eric Opoku Mensah,
  • Hyeonseok Oh,
  • Jiseon Song,
  • Jeongho Baek

DOI
https://doi.org/10.3390/plants13233447
Journal volume & issue
Vol. 13, no. 23
p. 3447

Abstract

Read online

Due to the vulnerability of pepper (Capsicum spp.) and the virulence of tomato spotted wilt virus (TSWV), seasonal shortages and surges of prices are a challenge and thus threaten household income. Traditional bioassays for detecting TSWV, such as observation for symptoms and reverse transcription-PCR, are time-consuming, labor-intensive, and sometimes lack precision, highlighting the need for a faster and more reliable approach to plant disease assessment. Here, two imaging techniques—Red–Green–Blue (RGB) and hyperspectral imaging (using NDVI and wavelength intensities)—were compared with a bioassay method to study the incidence and severity of TSWV in different pepper accessions. The bioassay results gave TSWV an incidence from 0 to 100% among the accessions, while severity ranged from 0 to 5.68% based on RGB analysis. The normalized difference vegetative index (NDVI) scored from 0.21 to 0.23 for healthy spots on the leaf but from 0.14 to 0.19 for disease spots, depending on the severity of the damage. The peak reflectance of the disease spots on the leaves was identified in the visible light spectrum (430–470 nm) when spectral bands were studied in the broad spectrum (400.93–1004.5 nm). For the selected wavelength in the visible light spectrum, a high reflectance intensity of 340 to 430 was identified for disease areas, but between 270 and 290 for healthy leaves. RGB and hyperspectral imaging techniques can be recommended for precise and accurate detection and quantification of TSWV infection.

Keywords