mBio (Aug 2021)

Recovery from Acute SARS-CoV-2 Infection and Development of Anamnestic Immune Responses in T Cell-Depleted Rhesus Macaques

  • Kim J. Hasenkrug,
  • Friederike Feldmann,
  • Lara Myers,
  • Mario L. Santiago,
  • Kejun Guo,
  • Bradley S. Barrett,
  • Kaylee L. Mickens,
  • Aaron Carmody,
  • Atsushi Okumura,
  • Deepashri Rao,
  • Madison M. Collins,
  • Ronald J. Messer,
  • Jamie Lovaglio,
  • Carl Shaia,
  • Rebecca Rosenke,
  • Neeltje van Doremalen,
  • Chad Clancy,
  • Greg Saturday,
  • Patrick Hanley,
  • Brian J. Smith,
  • Kimberly Meade-White,
  • W. Lesley Shupert,
  • David W. Hawman,
  • Heinz Feldmann

DOI
https://doi.org/10.1128/mBio.01503-21
Journal volume & issue
Vol. 12, no. 4

Abstract

Read online

ABSTRACT Severe coronavirus disease 2019 (COVID-19) has been associated with T cell lymphopenia, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we studied rhesus macaques that were depleted of either CD4+, CD8+, or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to that in controls. The T cell-depleted groups developed virus-neutralizing antibody responses and class switched to IgG. When reinfected 6 weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads, and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ nor CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory, or protection from a second infection. IMPORTANCE Patients with severe COVID-19 often have decreased numbers of T cells, a cell type important in fighting most viral infections. However, it is not known whether the loss of T cells contributes to severe COVID-19 or is a consequence of it. We studied rhesus macaques, which develop only mild COVID-19, similar to most humans. Experimental depletion of T cells slightly prolonged their clearance of virus, but there was no increase in disease severity. Furthermore, they were able to develop protection from a second infection and produced antibodies capable of neutralizing the virus. They also developed immunological memory, which allows a much stronger and more rapid response upon a second infection. These results suggest that T cells are not critical for recovery from acute SARS-CoV-2 infections in this model and point toward B cell responses and antibodies as the essential mediators of protection from re-exposure.

Keywords