Biology (Jan 2024)

Peptide-Guided Nanoparticle Drug Delivery for Cardiomyocytes

  • Dong Li,
  • Austin Taylor,
  • Haiwang Shi,
  • Fang Zhou,
  • Pengsheng Li,
  • Jyotsna Joshi,
  • Wuqiang Zhu,
  • Shu Wang

DOI
https://doi.org/10.3390/biology13010047
Journal volume & issue
Vol. 13, no. 1
p. 47

Abstract

Read online

Background: Nanoparticles (NPs) have been extensively utilized as a drug delivery system to control the release of therapeutic agents to treat cardiac injuries. However, despite the advantages of utilizing NP-based drug delivery for treating heart diseases, the current delivery system lacks specificity in targeting the cardiac tissue, thus limiting its application. Methods: We created three linear peptides, each consisting of 16–24 amino acids. These peptides were conjugated on the surface of NPs, resulting in the formation of cardiac targeting peptide (CTP)-NPs (designated as CTP-NP1, CTP-NP2, and CTP-NP3). To assess their effectiveness, we compared the binding efficiency of these three CTP-NPs to human and mouse cardiomyocytes. Additionally, we determined their distribution 24 h after injecting the CTP-NPs intravenously into adult C57BL/6J mice. Results: When compared to control NPs without CTP (Con-NPs), all three CTP-NPs exhibited significantly increased binding affinity to both human and mouse cardiomyocytes in vitro and enhanced retention in mouse hearts in vivo. A thorough assessment of the heart sections demonstrated that the binding specificity of CTP-NP3 to cardiomyocytes in vivo was significantly greater than that of Con-NPs. None of the three CTP-NPs were proven to cause cardiomyocyte apoptosis. Conclusions: Biocompatible and safe CTP-NP3 can target the heart via binding to cardiomyocytes. This approach of targeting specific molecules-coated NPs may help in delivering therapeutic compounds to cardiomyocytes for the treatment of heart diseases with high efficacy and low toxicity to other tissues.

Keywords