Biomedicines (Oct 2023)

Bacterial Tyrosinase Inhibition, Hemolytic and Thrombolytic Screening, and In Silico Modeling of Rationally Designed Tosyl Piperazine-Engrafted Dithiocarbamate Derivatives

  • Ameer Fawad Zahoor,
  • Freeha Hafeez,
  • Asim Mansha,
  • Shagufta Kamal,
  • Muhammad Naveed Anjum,
  • Zohaib Raza,
  • Samreen Gul Khan,
  • Jamila Javid,
  • Ali Irfan,
  • Mashooq Ahmad Bhat

DOI
https://doi.org/10.3390/biomedicines11102739
Journal volume & issue
Vol. 11, no. 10
p. 2739

Abstract

Read online

Piperazine is a privileged moiety that is a structural part of many clinical drugs. Piperazine-based scaffolds have attracted the attention of pharmaceutical and medicinal scientists to develop novel, efficient therapeutic agents owing to their significant and promising biological profile. In the current study, an ecofriendly ultrasonic-assisted synthetic approach was applied to achieve a novel series of 1-tosyl piperazine dithiocarbamate acetamide hybrids 4a–4j, which was evaluated for in vitro tyrosinase inhibition and thrombolytic and hemolytic cytotoxic activities. Among all the piperazine-based dithiocarbamate acetamide target molecules 4a–4j, the structural analogs 4d displayed excellent tyrosinase inhibition efficacy (IC50 = 6.88 ± 0.11 µM) which was better than the reference standard drugs kojic acid (30.34 ± 0.75 µM) and ascorbic acid (11.5 ± 1.00 µM), respectively, which was further confirmed by in silico induced-fit docking (IFD) simulation Good tyrosinase activities were exhibited by 4g (IC50 = 7.24 ± 0.15 µM), 4b (IC50 = 8.01 ± 0.11 µM) and 4c (IC50 = 8.1 ± 0.30 µM) dithiocarbamate acetamides, which were also better tyrosinase inhibitors than the reference drugs but were less active than the 4d structural hybrid. All the derivatives are less toxic, having values in the 0.29 ± 0.01% to 15.6 ± 0.5% range. The scaffold 4b demonstrated better hemolytic potential (0.29 ± 0.01%), while a remarkably high thrombolytic chemotherapeutic potential was displayed by analog 4e (67.3 ± 0.2%).

Keywords