Satellite Navigation (Jul 2022)
A multipath mitigation algorithm for GNSS signals based on the steepest descent approach
Abstract
Abstract Multipath interference seriously degrades the performance of Global Navigation Satellite System (GNSS) positioning in an urban canyon. Most current multipath mitigation algorithms suffer from heavy computational load or need external assistance. We propose a multipath mitigation algorithm based on the steepest descent approach, which has the merits of less computational load and no need for external aid. A new ranging code tracking loop is designed based on the steepest descent method, which can save an early branch or a late branch compared with the narrow-spacing correlation method. The power of the Non-Line-of-Sight (NLOS) signal is weaker than that of the Line-of-Sight (LOS) signal when the LOS signal is not obstructed and with a relatively high Carrier Noise Ratio (CNR). The peak position in the X-axis of the ranging code autocorrelation function does not move with the NLOS interference. Meanwhile, the cost function is designed according to this phenomenon. The results demonstrate that the proposed algorithm outperforms the narrow-spacing correlation and the Multipath Estimated Delay Locked Loop (MEDLL) in terms of the code multipath mitigation and computation time. The Standard Deviation (STD) of the tracking error with the proposed algorithm is less than 0.016 chips. Moreover, the computation time of the proposed algorithm in a software defined receiver is shortened by 24.21% compared with the narrow-spacing correlation.
Keywords