Ecotoxicology and Environmental Safety (Sep 2023)

2,3,7,8-tetrachlorodibenzo-p-dioxin induces multigenerational testicular toxicity and biosynthetic disorder of testosterone in BALB/C mice: Transcriptional, histopathological and hormonal determinants

  • Walaa Faiad,
  • Chadi Soukkarieh,
  • Abdulsamie Hanano

Journal volume & issue
Vol. 263
p. 115233

Abstract

Read online

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent environmental contaminant, is an endocrine disrupter with a proven reproductive toxicity in mammals. However, its effects on male fertility across generations are still elusive. The current work evaluates the toxicity of dioxin on male reproductive system in two separate groups of BALB/C mice; a group of pubertal males directly exposed to TCDD (referred to as DEmG), and a group of indirectly exposed males (referred to as IDEmG) comprises of F1, F2 and F3 males born from TCDD-exposed pregnant females. Both groups were exposed to 25 μg TCDD/kg body weight for a week. Our data show that males of TCDD-DEmG exhibited significant alterations in the expression of certain genes involved in the detoxification of TCDD and the biosynthesis of testosterone. This was accompanied with testicular pathological symptoms, including a sloughing in the germinal epithelium and a congestion of blood vessels in interstitial tissue with the presence of multinuclear cells into seminiferous tubule, with a 4-fold decline in the level of serum testosterone and reduced sperm count. Otherwise, the male reproductive toxicity across F1, F2 and F3 generations from TCDD-IDEmG was mainly characterized by: i) a reduce in body and testis weight. ii) a decrease in gene expression of steriodogenesis enzyme, e.g., AhR, CYP1A1, CYP11A1, COX1, COX2, LOX5 and LOX12. iii) a remarked and similar testicular histopathology that found for DEmG, iv) a serious decline in serum testosterone. v) a decreased male-to-female ratio. vi) a low sperm count with increasing abnormalities. Thus, pubertal or maternal exposure to TCDD provokes multigenerational male reproductive toxicity in mice, ultimately affecting the spermatogenesis and suggesting that the hormonal alternation and sperm abnormality are the most marked effects of the indirect exposure of mammalian male to TCDD.

Keywords