Journal of Limnology (Aug 2009)
Quantification of environment-driven changes in epiphytic macroinvertebrate communities associated to Phragmites australis
Abstract
The epiphytic macroinvertebrate communities associated with the Common Reed, Phragmites australis (Cav.) Trin. ex Steudel, were examined seasonally from summer 2004 to spring 2005 in eleven coastal lagoons of the Llobregat Delta (NE Spain) following the method proposed by Kornijów & Kairesalo (1994). The aims of the study were to: 1) characterise and quantify changes in epiphytic macroinvertebrate communities along environmental gradients; 2) assess the contribution of elements of the epiphytic compartment to structuring the community; 3) define the optima and tolerances of selected epiphytic macroinvertebrate taxa for the most relevant ecological factors responsible for assemblage composition; and 4) identify possible epiphytic species assemblages that would allow a lagoon’s typology to be established, as well as their representative indicator species. Communities showed statistically significant seasonal variation, with two faunal peaks: one in summer, with high chironomid densities, and the other in winter, with high naidid densities. These peaks showed a clear response to the influence of environmental factors. Salinity explained the highest percentage of total variance (36%), while trophic variables (nutrients, phytoplanktonic chlorophyll-a, and total organic carbon) and epiphyton biomass (19.2 and 4% of total variance explained, respectively) were secondary. Three different epiphytic macroinvertebrate species assemblages could be defined. These assemblages were directly linked to conductivity conditions, which determined the rate of survival of certain taxa, and to the existence of a direct connection with the sea, which permitted the establishment of "brackish-water" species. In spite of the existence of these species assemblages, the species composition and biomass of epiphytic macroinvertebrates and epiphyton differed substantially between lagoons; both elements were subject to changes in the environment, which finally determined the site-to-site variation in the density and composition of the macroinvertebrate population.
Keywords