AIMS Mathematics (Jun 2023)

Enhancing the characteristics of MHD squeezed Maxwell nanofluids via viscous dissipation impact

  • Haifaa Alrihieli,
  • Musaad S. Aldhabani ,
  • Ghadeer M. Surrati

DOI
https://doi.org/10.3934/math.2023965
Journal volume & issue
Vol. 8, no. 8
pp. 18948 – 18963

Abstract

Read online

Theoretical and numerical analysis are employed in this study to explore the characteristics of Maxwell squeezed nanofluid flow over a sensor surface, accounting for both the effects of viscous dissipation and an external magnetic field. The objective of this study is to investigate the impact of these two factors on the behavior of the nanofluid as it traverses the sensor surface, with a specific emphasis on the modifications in its physical properties, including thermal conductivity and viscosity. In this study, the theoretical analysis relies on the Navier-Stokes equations and Maxwell's equations, which are numerically solved using a shooting method. According to the findings, the applied magnetic field and viscous dissipation have a notable influence on the nanofluid's physical properties and flow characteristics. The magnetic field induces greater alignment and concentration of nanoparticles in the nanofluid, leading to alterations in the fluid's thermal conductivity and viscosity. The impacts of viscous dissipation are likewise observed to be significant, resulting in a considerable elevation in the fluid temperature as a result of the frictional forces between the fluid and the sensor surface. The values for drag coefficient, heat transfer, and mass transfer rate are organized in a table. Some significant findings were observed in this study, which indicate that the viscosity parameter, the squeezed flow index, and magnetic parameter contribute to a reduction in the temperature distribution across the boundary layer region. Conversely, the thermal conductivity parameter and Eckert number show the opposite trend, resulting in an increase in temperature distribution. Furthermore, the novelty of this investigation can be accentuated by analyzing the flow of squeezed Maxwell nanofluid due to a sensor surface based on the Buongiorno concept. This analysis takes into account external magnetic fields, variable thermal conductivity assumptions, and the phenomenon of viscous dissipation.

Keywords