Animal Microbiome (Jun 2022)

Expressions of resistome is linked to the key functions and stability of active rumen microbiome

  • Tao Ma,
  • Rahat Zaheer,
  • Tim A. McAllister,
  • Wei Guo,
  • Fuyong Li,
  • Yan Tu,
  • Qiyu Diao,
  • Le Luo Guan

DOI
https://doi.org/10.1186/s42523-022-00189-6
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background The resistome describes the array of antibiotic resistant genes (ARGs) present within a microbial community. Recent research has documented the resistome in the rumen of ruminants and revealed that the type and abundance of ARGs could be affected by diet and/or antibiotic treatment. However, most of these studies only assessed ARGs using metagenomics, and expression of the resistome and its biological function within the microbiome remains largely unexplored. Results We characterized the pools of ARGs (resistome) and their activities in the rumen of 48 beef cattle belonging to three breeds (Angus, Charolais, Kinsella composite hybrid), using shotgun metagenomics and metatranscriptomics. Sixty (including 20 plasmid-associated) ARGs were expressed which accounted for about 30% of the total number of ARGs (187) identified in metagenomic datasets, with tetW and mefA exhibiting the highest level of expression. In addition, the bacterial hosts of 17 expressed ARGs were identified. The active resistome was less diverse in Kinsella composite hybrid than Angus, however, expression of ARGs did not differ among breeds. Although not associated with feed efficiency, the total abundance of expressed ARGs was positively correlated with metabolic pathways and ‘attenuation values’ (a measurement of stability) of the active rumen microbiome, suggesting that ARGs expression influences the stability and functionality of the rumen microbiome. Moreover, Ruminococcus spp., Prevotella ruminicola, Muribaculaceae spp. and Collinsella aerofaciens were all identified as hosts of expressed ARGs, possibly promoting the dominance of these carbohydrate degraders within the rumen microbiome. Conclusions Findings from this study provide new insight into the active rumen resistome in vivo, which may inform strategies to limit the spread of ubiquitously found ARGs from the rumen to the broader environment without negatively impacting the key functional outcomes of the rumen microbiome.

Keywords