Sustainable and Environmentally Friendly Na and Mg Aqueous Hybrid Batteries Using Na and K Birnessites
Francisco Gálvez,
Marta Cabello,
Pedro Lavela,
Gregorio F. Ortiz,
José L. Tirado
Affiliations
Francisco Gálvez
Departamento de Química Inorgánica e Ingeniería Química, Instituto Universitario de Química Fina y Nanoquímica, Universidad de Córdoba, Edificio Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain
Marta Cabello
Departamento de Química Inorgánica e Ingeniería Química, Instituto Universitario de Química Fina y Nanoquímica, Universidad de Córdoba, Edificio Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain
Pedro Lavela
Departamento de Química Inorgánica e Ingeniería Química, Instituto Universitario de Química Fina y Nanoquímica, Universidad de Córdoba, Edificio Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain
Gregorio F. Ortiz
Departamento de Química Inorgánica e Ingeniería Química, Instituto Universitario de Química Fina y Nanoquímica, Universidad de Córdoba, Edificio Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain
José L. Tirado
Departamento de Química Inorgánica e Ingeniería Química, Instituto Universitario de Química Fina y Nanoquímica, Universidad de Córdoba, Edificio Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain
Sodium and magnesium batteries with intercalation electrodes are currently alternatives of great interest to lithium in stationary applications, such as distribution networks or renewable energies. Hydrated laminar oxides such as birnessites are an attractive cathode material for these batteries. Sodium and potassium birnessite samples have been synthesized by thermal and hydrothermal oxidation methods. Hybrid electrochemical cells have been built using potassium birnessite in aqueous sodium electrolyte, when starting in discharge and with a capacity slightly higher than 70 mA h g−1. Hydrothermal synthesis generally shows slightly poorer electrochemical behavior than their thermal counterparts in both sodium and potassium batteries. The study on hybrid electrolytes has resulted in the successful galvanostatic cycling of both sodium birnessite and potassium birnessite in aqueous magnesium electrolyte, with maximum capacities of 85 and 50 mA h g−1, respectively.