AIP Advances (Sep 2024)
An experimental study of the impact of various infill parameters on the compressive strength of 3D printed PETG/CF
Abstract
This study examines the effect of different infill patterns and percentages on the compressive strength attributes of carbon fiber-reinforced PETG samples printed using fused deposition modeling, employing response surface methodology. Carbon fiber-enhanced PETG (polyethylene terephthalate glycol) composites represent a cutting-edge advancement in additive manufacturing, drawing significant interest due to their impressive mechanical attributes. The experimentation involves modifying printing parameters such as the infill pattern (tri-hexagon, cubic, or line) and infill density (40%, 60%, and 80%). These parameter values were obtained through a central composite experimental design utilizing response surface methodology. The compressive strength of the 3D-printed carbon fiber-reinforced PETG specimens is assessed following ASTM D695 standards. Research indicates that increasing the density of the infill results in enhanced compressive strength. Specifically, specimens featuring an 80% infill density with a tri-hexagon pattern demonstrate a notable compressive strength of 39.16 MPa. By employing regression analysis and optimization techniques, the study predicts experimental outcomes accurately. These findings offer valuable insights into refining the manufacturing process of carbon fiber-reinforced PETG components. This advancement holds potential benefits across various engineering fields, particularly in automotive and aerospace industries, where strength and durability are essential.