Network Neuroscience (Sep 2020)

Asymmetric high-order anatomical brain connectivity sculpts effective connectivity

  • Arseny A. Sokolov,
  • Peter Zeidman,
  • Adeel Razi,
  • Michael Erb,
  • Philippe Ryvlin,
  • Marina A. Pavlova,
  • Karl J. Friston

DOI
https://doi.org/10.1162/netn_a_00150
Journal volume & issue
Vol. 4, no. 3
pp. 871 – 890

Abstract

Read online

AbstractBridging the gap between symmetric, direct white matter brain connectivity and neural dynamics that are often asymmetric and polysynaptic may offer insights into brain architecture, but this remains an unresolved challenge in neuroscience. Here, we used the graph Laplacian matrix to simulate symmetric and asymmetric high-order diffusion processes akin to particles spreading through white matter pathways. The simulated indirect structural connectivity outperformed direct as well as absent anatomical information in sculpting effective connectivity, a measure of causal and directed brain dynamics. Crucially, an asymmetric diffusion process determined by the sensitivity of the network nodes to their afferents best predicted effective connectivity. The outcome is consistent with brain regions adapting to maintain their sensitivity to inputs within a dynamic range. Asymmetric network communication models offer a promising perspective for understanding the relationship between structural and functional brain connectomes, both in normalcy and neuropsychiatric conditions.