Complexity (Jan 2021)

An Improved Method for Stochastic Nonlinear System’s Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein–Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques

  • Donia Ben Halima Abid,
  • Saif Eddine Abouda,
  • Hanane Medhaffar,
  • Mohamed Chtourou

DOI
https://doi.org/10.1155/2021/8525090
Journal volume & issue
Vol. 2021

Abstract

Read online

This paper proposes an innovative identification approach of nonlinear stochastic systems using Hammerstein–Wiener (HW) model with output-error autoregressive (OEA) noise. Two fuzzy systems are suggested for the identification of the input and output nonlinear blocks of a proposed model from given input-output data measurements. In this work, the need for the commonly used assumptions including well-known structure of input and/or output nonlinearities and/or reversible nonlinear output is eliminated by replacing the intermediate variables and noise with their estimates. Four parametric estimation algorithms to identify the proposed fuzzy-type stochastic output-error autoregressive HW (FSOEAHW) model are derived based on backpropagation algorithm and multi-innovation and data filtering identification techniques. The proposed algorithms are improved backpropagation gradient (IBPG) algorithm, multi-innovation IBPG (MIIBPG) algorithm, a data filtering IBPG (FIBPG) algorithm, and a multi-innovation-based FIBPG (MIFIBPG) algorithm. The convergence of the parameter estimation algorithms is studied. The effectiveness of the proposed algorithms is shown by a given simulation example.