IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2021)
Flower Detection Using Object Analysis: New Ways to Quantify Plant Phenology in a Warming Tundra Biome
Abstract
Rising temperatures caused by global warming are affecting the distributions of many plant and animal species across the world. This can lead to structural changes in entire ecosystems, and serious, persistent environmental consequences. However, many of these changes occur in vast and poorly accessible biomes and involve myriad species. As a consequence, conventional methods of measurement and data analysis are resource-intensive, restricted in scope, and in some cases, intractable for measuring species changes in remote areas. In this article, we introduce a method for detecting flowers of tundra plant species in large data sets obtained by aerial drones, making it possible to understand ecological change at scale, in remote areas. We focus on the sedge species E. vaginatum that is dominant at the investigated tundra field site in the Canadian Arctic. Our system is a modified version of the Faster R-CNN architecture capable of real-world plant phenology analysis. Our model outperforms experienced human annotators in both detection and counting, recording much higher recall and comparable level of precision, regardless of the image quality caused by varying weather conditions during the data collection. (K. Stanski, GitHub - karoleks4/flower-detection: Flower detection using object analysis: New ways to quantify plant phenology in a warming tundra biome. GitHub. Accessed: Sep. 17, 2021. [Online]. Available: https://github.com/karoleks4/flower-detection.)
Keywords