Advanced Science (Aug 2019)

Co and Fe Codoped WO2.72 as Alkaline‐Solution‐Available Oxygen Evolution Reaction Catalyst to Construct Photovoltaic Water Splitting System with Solar‐To‐Hydrogen Efficiency of 16.9%

  • Huayu Chen,
  • Lizhu Song,
  • Shuxin Ouyang,
  • Jianbo Wang,
  • Jun Lv,
  • Jinhua Ye

DOI
https://doi.org/10.1002/advs.201900465
Journal volume & issue
Vol. 6, no. 16
pp. n/a – n/a

Abstract

Read online

Abstract Oxygen evolution electrode is a crucial component of efficient photovoltaic‐water electrolysis systems. Previous work focuses mainly on the effect of electronic structure modulation on the oxygen evolution reaction (OER) performance of 3d‐transition‐metal‐based electrocatalyst. However, high‐atomic‐number W‐based compound with complex electronic structure for versatile modulation is seldom explored because of its instability in OER‐favorable alkaline solution. Here, codoping induced electronic structure modulation generates a beneficial effect of transforming the alkaline‐labile WO2.72 (WO) in to efficient alkaline‐solution‐stable Co and Fe codoped WO2.72 (Co&Fe‐WO) with porous urchin‐like structure. The codoping lowers the chemical valence of W to ensure the durability of W‐based catalyst, improves the electron‐withdrawing capability of W and O to stabilize the Co and Fe in OER‐favorable high valence state, and enriches the surface hydroxyls, which act as reactive sites. The Co&Fe‐WO shows ultralow overpotential (226 mV, J = 10 mA cm−2), low Tafel slope (33.7 mV dec−1), and good conductivity. This catalyst is finally applied to a photovoltaic‐water splitting system to stably produce hydrogen for 50 h at a high solar‐to‐hydrogen efficiency of 16.9%. This work highlights the impressive effect of electronic structure modulation on W‐based catalyst, and may inspire the modification of potential but unstable catalyst for solar energy conversion.

Keywords