Materials (Mar 2024)

Tunable C<sub>4</sub>-Symmetry-Broken Metasurfaces Based on Phase Transition of Vanadium Dioxide (VO<sub>2</sub>)

  • Yuting Zhang,
  • Xiaoyuan Hao,
  • Xueguang Lu,
  • Meng Liu,
  • Wanxia Huang,
  • Cheng Zhang,
  • Wei Huang,
  • Yi Xu,
  • Wentao Zhang

DOI
https://doi.org/10.3390/ma17061293
Journal volume & issue
Vol. 17, no. 6
p. 1293

Abstract

Read online

Coupling is a ubiquitous phenomenon observed in various systems, which profoundly alters the original oscillation state of resonant systems and leads to the unique optical properties of metasurfaces. In this study, we introduce a terahertz (THz) tunable coupling metasurface characterized by a four-fold rotation (C4) symmetry-breaking structural array achieved through the incorporation of vanadium dioxide (VO2). This disruption of the C4 symmetry results in dynamically controlled electromagnetic interactions and couplings between excitation modes. The coupling between new resonant modes modifies the peak of electromagnetic-induced transparency (EIT) within the C4 symmetric metasurfaces, simulating the mutual interference process between modes. Additionally, breaking the C4 symmetry enhances the mirror asymmetry, and imparts distinct chiral properties in the far-field during the experimental process. This research demonstrates promising applications in diverse fields, including biological monitoring, light modulation, sensing, and nonlinear enhancement.

Keywords