Gels (Jun 2022)

Tuning Myogenesis by Controlling Gelatin Hydrogel Properties through Hydrogen Peroxide-Mediated Cross-Linking and Degradation

  • Wildan Mubarok,
  • Kelum Chamara Manoj Lakmal Elvitigala,
  • Shinji Sakai

DOI
https://doi.org/10.3390/gels8060387
Journal volume & issue
Vol. 8, no. 6
p. 387

Abstract

Read online

Engineering skeletal muscle tissue in vitro is important to study the mechanism of myogenesis, which is crucial for regenerating muscle cells. The physicochemical properties of the cellular microenvironment are known to govern various cell behaviours. Yet, most studies utilised synthetic materials to model the extracellular matrix that suffers from cytotoxicity to the cells. We have previously reported that the physicochemical property of hydrogels obtained from horseradish peroxidase (HRP)-catalysed cross-linking could be controlled by a simple adjustment to the exposure time to air containing H2O2. In this study, we evaluated the influence of physicochemical properties dynamics in the gelatin possessing phenol groups (Gelatin-Ph) hydrogel to regulate the myogenesis in vitro. We controlled the Young’s modulus of the Gelatin-Ph hydrogel by tuning the air containing 16 ppm H2O2 exposure time for 15–60 min. Additionally, prolonged exposure to air containing H2O2 also induced Gelatin-Ph degradation. Myoblasts showed higher adhesion and myotube formation on stiff hydrogel (3.53 kPa) fabricated through 30 min of exposure to air containing H2O2 compared to those on softer hydrogel (0.77–2.79 kPa) fabricated through 15, 45, and 60 min of the exposure. These results demonstrate that the myogenesis can be tuned by changes in the physicochemical properties of Gelatin-Ph hydrogel mediated by H2O2.

Keywords