Mathematics (Jun 2022)
A Variable Neighborhood Search Approach for the Dynamic Single Row Facility Layout Problem
Abstract
The dynamic single row facility layout problem (DSRFLP) is defined as the problem of arranging facilities along a straight line during a multi-period planning horizon with the objective of minimizing the sum of the material handling and rearrangement costs. The material handling cost is the sum of the products of the flow costs and center-to-center distances between facilities. In this paper, we focus on metaheuristic algorithms for this problem. The main contributions of the paper are three-fold. First, a variable neighborhood search (VNS) algorithm for the DSRFLP is proposed. The main version of VNS uses an innovative strategy to start the search from a solution obtained by constructing an instance of the single row facility layout problem (SRFLP) from a given instance of the DSRFLP and applying a heuristic algorithm for the former problem. Second, a fast local search (LS) procedure is developed. The innovations of this procedure are two-fold: (i) the fast insertion and swap neighborhood exploration techniques are adapted for the case of the dynamic version of the SRFLP; and (ii) to reduce the computational time, the swap operation is restricted on pairs of facilities of equal lengths. Provided the number of planning periods is a constant, the neighborhood exploration procedures for n facilities have only O(n2) time complexity. The superiority of these procedures over traditional LS techniques is also shown by performing numerical tests. Third, computational experiments on DSRFLP instances with up to 200 facilities and three or five planning periods are carried out to validate the effectiveness of the VNS approach. The proposed VNS heuristic is compared with the simulated annealing (SA) method which is the state of the art algorithm for the DSRFLP. Experiments show that VNS outperforms SA by a significant margin.
Keywords