Entropy (Mar 2024)

Game Theoretic Clustering for Finding Strong Communities

  • Chao Zhao,
  • Ali Al-Bashabsheh,
  • Chung Chan

DOI
https://doi.org/10.3390/e26030268
Journal volume & issue
Vol. 26, no. 3
p. 268

Abstract

Read online

We address the challenge of identifying meaningful communities by proposing a model based on convex game theory and a measure of community strength. Many existing community detection methods fail to provide unique solutions, and it remains unclear how the solutions depend on initial conditions. Our approach identifies strong communities with a hierarchical structure, visualizable as a dendrogram, and computable in polynomial time using submodular function minimization. This framework extends beyond graphs to hypergraphs or even polymatroids. In the case when the model is graphical, a more efficient algorithm based on the max-flow min-cut algorithm can be devised. Though not achieving near-linear time complexity, the pursuit of practical algorithms is an intriguing avenue for future research. Our work serves as the foundation, offering an analytical framework that yields unique solutions with clear operational meaning for the communities identified.

Keywords