Journal of Experimental & Clinical Cancer Research (Dec 2024)

Inhibition of the chemokine receptors CXCR1 and CXCR2 synergizes with docetaxel for effective tumor control and remodeling of the immune microenvironment of HPV-negative head and neck cancer models

  • Lucas A. Horn,
  • Hanne Lind,
  • Kristen Fousek,
  • Haiyan Qin,
  • Nika Rajabian,
  • Shantel Angstadt,
  • Nicole Hsiao-Sanchez,
  • Miriam M. Medina-Enriquez,
  • Marcus D. Kelly,
  • Clint T. Allen,
  • Sarah M. Hammoudeh,
  • Roberto Weigert,
  • Dean Y. Maeda,
  • John A. Zebala,
  • Claudia Palena

DOI
https://doi.org/10.1186/s13046-024-03240-3
Journal volume & issue
Vol. 43, no. 1
pp. 1 – 22

Abstract

Read online

Abstract Background Relapsed head and neck squamous cell carcinoma (HNSCC) unrelated to HPV infection carries a poor prognosis. Novel approaches are needed to improve the clinical outcome and prolong survival in this patient population which has poor long-term responses to immune checkpoint blockade. This study evaluated the chemokine receptors CXCR1 and CXCR2 as potential novel targets for the treatment of HPV-negative HNSCC. Methods Expression of IL-8, CXCR1, and CXCR2 was investigated in HNSCC tissues and human cell line models. Inhibition of CXCR1/2 with the clinical stage, small molecule inhibitor, SX-682, was evaluated in vitro and in vivo using human xenografts and murine models of HNSCC, both as a monotherapy and in combination with the taxane chemotherapy, docetaxel. Results High levels of IL-8, CXCR1, and CXCR2 expression were observed in HPV-negative compared to HPV-positive HNSCC tumors or cell lines. Treatment of HPV-negative HNSCC cell lines in vitro with SX-682 sensitized the tumor cells to the cytotoxic activity of docetaxel. In vivo, treatment of HNSCC xenograft models with the combination of SX-682 plus docetaxel led to strong anti-tumor control resulting in tumor cures. This phenomenon was associated with an increase of microRNA-200c and a decreased expression of its target, tubulin beta-3, a protein involved in resistance to microtubule-targeting chemotherapies. In vivo treatment of a murine syngeneic model of HNSCC with SX-682 plus docetaxel led to potent anti-tumor efficacy through a simultaneous decrease in suppressive CXCR2+ polymorphonuclear, myeloid-derived suppressor cells and an increase in cytotoxic CD8+ T cells in the combination therapy treated tumors compared to controls. Conclusions This study reports, for the first time, mechanistic findings through which the combination of CXCR1/2 inhibition and docetaxel chemotherapy exhibits synergy in models of HPV-negative HNSCC. These findings provide rationale for the use of this novel combination approach to treat HPV-negative HNSCC patients and for future combination studies of CXCR1/2 inhibition, docetaxel, and immune-based therapies.

Keywords