Heliyon (Jul 2024)

Construction of a circadian rhythm-relevant gene signature for hepatocellular carcinoma prognosis, immunotherapy and chemosensitivity prediction

  • Zhiyu Ye,
  • Ying Du,
  • Wenguan Yu,
  • Yunshou Lin,
  • Li Zhang,
  • Xiaoyu Chen

Journal volume & issue
Vol. 10, no. 13
p. e33682

Abstract

Read online

Aims: This study explored the molecular and biologic mechanisms underlying the association between circadian rhythm disorders (CRD) and increased risk for hepatocellular carcinoma (HCC). Background: CRD are linked to increased risk for HCC, but the molecular and biologic mechanisms underlying this association are limited.ObjectiveThe study constructed and validated a CRD related gene model as an independent prognostic factor for HCC, providing insight into the molecular mechanisms linking CRD to increased HCC risk and identifying potential indicators for the efficacy of immunotherapy and anticancer drugs. This helps provide important clues for personalized treatment strategies for HCC patients. Methods: Gene sets correlated with circadian rhythm were obtained from the Molecular Signatures Database (MSigDB) to intersect with differentially expressed genes (DEGs) between tumor samples and control samples in The Cancer Genome Atlas (TCGA) and HCCDB18 from Hepatocellular Carcinoma Cell DataBase (HCCDB). The CRD related gene model was developed by univariate Cox and stepwise multivariate analysis. Immune checkpoint blockade (ICB) therapy and anticancer drugs were analyzed using the tumor immune dysfunction and exclusion (TIDE) and pRRophetic, respectively. Seurat determined the cell type of HCC by analyzing single-cell data, and malignant cells were identified using Copykat. To detect the mRNA levels of genes in the CRD related gene model, quantitative real-time polymerase chain reaction (qRT-PCR) was carried out. Results: The activity of circadian rhythm in HCC tissue was significantly lower than that in control tissue. Subsequently, EZH2, IMPDH2, TYMS and SERPINE1 were selected to construct the CRD related gene model, which was an independent factor for HCC prognosis. Notably, low-risk patients had lower levels of immune cell infiltration and lower TIDE scores compared to high-risk patients with HCC, indicating that patients with a low risk may derive more benefit from immunotherapy. IMPDH2, TYMS and SERPINE1 expressed significantly higher in malignant cells than in benign epithelial cells. Conclusions: This study presents a CRD related gene model to reveal the molecular perspective of the dependent mechanism of the association between CRD and cancer, which provides a potential indicator for understanding the preclinical efficacy of ICB and anticancer drugs.

Keywords