PeerJ (Mar 2025)

Electroencephalographic power spectrum patterns related to the intelligence of children with learning disorders

  • Benito Javier Martínez-Briones,
  • Thalía Fernández,
  • Juan Silva-Pereyra

DOI
https://doi.org/10.7717/peerj.19138
Journal volume & issue
Vol. 13
p. e19138

Abstract

Read online Read online

Children with learning disorders (LD) perform below average in tests of academic abilities and intelligence. These children also have a significantly abnormal resting-state electroencephalogram (EEG) compared to children with typical development (TD), i.e., an excess of slow brain oscillations such as delta and theta that may be markers of inefficient cognitive processing. We aimed to explore the relationship between the performance in an intelligence test and the resting-state EEG power spectrum of children with LD. Ninety-one children with LD and 45 control children with TD were evaluated with the Wechsler Intelligence Scale for Children 4th Edition (WISC-IV) test of intelligence and a 19-channel EEG during an eyes-closed resting-state condition. The EEG dimensionality was reduced with a principal component analysis that yielded several components representing EEG bands with functional meaning. The first seven EEG components and the intelligence values were analyzed with multiple linear regression and a between-group discriminant analysis. The EEG power spectrum was significantly related to children’s intelligence, predicting 13.1% of the IQ variance. Generalized delta and theta power were inversely related to IQ, whereas frontoparietal gamma activity was directly related. The intelligence test and the resting state EEG had a combined 82.4% success rate to discriminate between children with TD and those with LDs.

Keywords