Pharmaceuticals (Feb 2019)

Camphor, Applied Epidermally to the Back, Causes Snout- and Chest-Grooming in Rats: A Response Mediated by Cutaneous TRP Channels

  • Débora T. Ishikawa,
  • Robson Cristiano Lillo Vizin,
  • Cristiane Oliveira de Souza,
  • Daniel Carneiro Carrettiero,
  • Andrej A. Romanovsky,
  • Maria Camila Almeida

DOI
https://doi.org/10.3390/ph12010024
Journal volume & issue
Vol. 12, no. 1
p. 24

Abstract

Read online

Thermoregulatory grooming, a behavioral defense against heat, is known to be driven by skin-temperature signals. Because at least some thermal cutaneous signals that drive heat defenses are likely to be generated by transient receptor potential (TRP) channels, we hypothesized that warmth-sensitive TRPs drive thermoregulatory grooming. Adult male Wistar rats were used. We showed that camphor, a nonselective agonist of several TRP channels, including vanilloid (V) 3, when applied epidermally to the back (500 mg/kg), caused a pronounced self-grooming response, including paw-licking and snout- and chest-“washing„. By the percentage of time spent grooming, the response was similar to the thermoregulatory grooming observed during exposure to ambient warmth (32 °C). Ruthenium red (a non-selective antagonist of TRP channels, including TRPV3), when administered intravenously at a dose of 0.1 mg/kg, attenuated the self-grooming behavior induced by either ambient warmth or epidermal camphor. Furthermore, the intravenous administration of AMG8432 (40 mg/kg), a relatively selective TRPV3 antagonist, also attenuated the self-grooming response to epidermal camphor. We conclude that camphor causes the self-grooming behavior by acting on TRP channels in the skin. We propose that cutaneous warmth signals mediated by TRP channels, possibly including TRPV3, drive thermoregulatory self-grooming in rats.

Keywords