17-β-estradiol (EST) is the most potent form of naturally occurring estrogens; therefore, it has found a wide pharmaceutical application. The major problem associated with the use of EST is its very low water solubility, resulting in poor oral bioavailability. To overcome this drawback, a complexation with cyclodextrins (CD) has been suggested as a solution. In this work, the host–guest inclusion complex between the ß-CD and EST has been prepared using four different methods. The obtained samples have been deeply characterized using 13C CP MAS solid state NMR, PXRD, FT-IR, TGA, DSC, and SEM. Using SCXRD, the crystal structure of the complex has been determined, being to the best of our knowledge the first solved crystal structure of an estrogen/CD complex. The periodic DFT calculations of NMR properties using GIPAW were found to be particularly helpful in the analysis of disorder in the solid state and interpretation of experimental NMR results. This work highlights the importance of a combined ssNMR/SCXRD approach to studying the structure of the inclusion complexes formed by cyclodextrins.